Silicon Carbide Ceramic Plates: High-Temperature Structural Materials with Exceptional Thermal, Mechanical, and Environmental Stability alumina cost per kg

1. Crystallography and Product Basics of Silicon Carbide

1.1 Polymorphism and Atomic Bonding in SiC


(Silicon Carbide Ceramic Plates)

Silicon carbide (SiC) is a covalent ceramic compound composed of silicon and carbon atoms in a 1:1 stoichiometric ratio, distinguished by its exceptional polymorphism– over 250 recognized polytypes– all sharing strong directional covalent bonds but differing in stacking series of Si-C bilayers.

One of the most technically relevant polytypes are 3C-SiC (cubic zinc blende framework), and the hexagonal forms 4H-SiC and 6H-SiC, each exhibiting refined variations in bandgap, electron movement, and thermal conductivity that influence their viability for certain applications.

The stamina of the Si– C bond, with a bond power of approximately 318 kJ/mol, underpins SiC’s phenomenal solidity (Mohs hardness of 9– 9.5), high melting factor (~ 2700 ° C), and resistance to chemical destruction and thermal shock.

In ceramic plates, the polytype is usually picked based upon the planned use: 6H-SiC is common in architectural applications due to its convenience of synthesis, while 4H-SiC dominates in high-power electronics for its remarkable charge service provider movement.

The wide bandgap (2.9– 3.3 eV depending on polytype) additionally makes SiC an excellent electric insulator in its pure form, though it can be doped to operate as a semiconductor in specialized electronic tools.

1.2 Microstructure and Phase Pureness in Ceramic Plates

The efficiency of silicon carbide ceramic plates is critically based on microstructural attributes such as grain dimension, thickness, stage homogeneity, and the presence of second stages or contaminations.

High-grade plates are usually fabricated from submicron or nanoscale SiC powders with sophisticated sintering methods, resulting in fine-grained, completely thick microstructures that maximize mechanical stamina and thermal conductivity.

Pollutants such as totally free carbon, silica (SiO â‚‚), or sintering help like boron or aluminum need to be meticulously regulated, as they can form intergranular movies that minimize high-temperature toughness and oxidation resistance.

Residual porosity, also at low levels (

Advanced Ceramics founded on October 17, 2012, is a high-tech enterprise committed to the research and development, production, processing, sales and technical services of ceramic relative materials such as Silicon Carbide Ceramic Plates. Our products includes but not limited to Boron Carbide Ceramic Products, Boron Nitride Ceramic Products, Silicon Carbide Ceramic Products, Silicon Nitride Ceramic Products, Zirconium Dioxide Ceramic Products, etc. If you are interested, please feel free to contact us.
Tags: silicon carbide plate,carbide plate,silicon carbide sheet

All articles and pictures are from the Internet. If there are any copyright issues, please contact us in time to delete.

Inquiry us