Silicon Carbide Ceramic Plates: High-Temperature Structural Materials with Exceptional Thermal, Mechanical, and Environmental Stability alumina cost per kg
1. Crystallography and Product Fundamentals of Silicon Carbide
1.1 Polymorphism and Atomic Bonding in SiC
(Silicon Carbide Ceramic Plates)
Silicon carbide (SiC) is a covalent ceramic substance made up of silicon and carbon atoms in a 1:1 stoichiometric proportion, distinguished by its impressive polymorphism– over 250 recognized polytypes– all sharing strong directional covalent bonds but differing in stacking series of Si-C bilayers.
One of the most technically appropriate polytypes are 3C-SiC (cubic zinc blende structure), and the hexagonal forms 4H-SiC and 6H-SiC, each exhibiting subtle variants in bandgap, electron mobility, and thermal conductivity that affect their suitability for particular applications.
The stamina of the Si– C bond, with a bond power of around 318 kJ/mol, underpins SiC’s extraordinary firmness (Mohs firmness of 9– 9.5), high melting factor (~ 2700 ° C), and resistance to chemical degradation and thermal shock.
In ceramic plates, the polytype is commonly picked based upon the meant use: 6H-SiC is common in structural applications due to its simplicity of synthesis, while 4H-SiC dominates in high-power electronic devices for its superior charge service provider flexibility.
The vast bandgap (2.9– 3.3 eV relying on polytype) additionally makes SiC an outstanding electrical insulator in its pure kind, though it can be doped to work as a semiconductor in specialized electronic gadgets.
1.2 Microstructure and Stage Pureness in Ceramic Plates
The performance of silicon carbide ceramic plates is critically depending on microstructural attributes such as grain size, density, stage homogeneity, and the presence of second phases or impurities.
Top notch plates are commonly made from submicron or nanoscale SiC powders through innovative sintering methods, resulting in fine-grained, fully thick microstructures that make best use of mechanical strength and thermal conductivity.
Impurities such as free carbon, silica (SiO TWO), or sintering help like boron or aluminum must be thoroughly regulated, as they can create intergranular movies that decrease high-temperature toughness and oxidation resistance.
Recurring porosity, also at low degrees (
Advanced Ceramics founded on October 17, 2012, is a high-tech enterprise committed to the research and development, production, processing, sales and technical services of ceramic relative materials such as Silicon Carbide Ceramic Plates. Our products includes but not limited to Boron Carbide Ceramic Products, Boron Nitride Ceramic Products, Silicon Carbide Ceramic Products, Silicon Nitride Ceramic Products, Zirconium Dioxide Ceramic Products, etc. If you are interested, please feel free to contact us.
Tags: silicon carbide plate,carbide plate,silicon carbide sheet
All articles and pictures are from the Internet. If there are any copyright issues, please contact us in time to delete.
Inquiry us